New insights into cochlear sound encoding

نویسندگان

  • Tobias Moser
  • Christian Vogl
چکیده

The inner ear uses specialized synapses to indefatigably transmit sound information from hair cells to spiral ganglion neurons at high rates with submillisecond precision. The emerging view is that hair cell synapses achieve their demanding function by employing an unconventional presynaptic molecular composition. Hair cell active zones hold the synaptic ribbon, an electron-dense projection made primarily of RIBEYE, which tethers a halo of synaptic vesicles and is thought to enable a large readily releasable pool of vesicles and to contribute to its rapid replenishment. Another important presynaptic player is otoferlin, coded by a deafness gene, which assumes a multi-faceted role in vesicular exocytosis and, when disrupted, causes auditory synaptopathy. A functional peculiarity of hair cell synapses is the massive heterogeneity in the sizes and shapes of excitatory postsynaptic currents. Currently, there is controversy as to whether this reflects multiquantal release with a variable extent of synchronization or uniquantal release through a dynamic fusion pore. Another important question in the field has been the precise mechanisms of coupling presynaptic Ca (2+) channels and vesicular Ca (2+) sensors. This commentary provides an update on the current understanding of sound encoding in the cochlea with a focus on presynaptic mechanisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BOLD fMRI study of ultrahigh frequency encoding in the inferior colliculus

Many vertebrates communicate with ultrahigh frequency (UHF) vocalizations to limit auditory detection by predators. The mechanisms underlying the neural encoding of such UHF sounds may provide important insights for understanding neural processing of other complex sounds (e.g. human speeches). In the auditory system, sound frequency is normally encoded topographically as tonotopy, which, howeve...

متن کامل

New insights into cochlear sound encoding [version 1; referees: 2 approved]

The inner ear uses specialized synapses to indefatigably transmit sound information from hair cells to spiral ganglion neurons at high rates with submillisecond precision. The emerging view is that hair cell synapses achieve their demanding function by employing an unconventional presynaptic molecular composition. Hair cell active zones hold the synaptic ribbon, an electron-dense projection mad...

متن کامل

Synaptic Physiology of the Cochlear Sound Encoding

..........................................................................................................

متن کامل

Otoacoustic emissions, their origin in cochlear function, and use.

Otoacoustic emissions (OAEs) are sounds of cochlear origin, which can be recorded by a microphone fitted into the ear canal. They are caused by the motion of the cochlea's sensory hair cells as they energetically respond to auditory stimulation. OAEs provide a simple, efficient and non-invasive objective indicator of healthy cochlear function and OAE screening is widely used in universal new-bo...

متن کامل

A model for predicting localization performance in cochlear implant users

Mathematical models can be very useful for understanding complicated systems, and for testing algorithms through simulation that would be difficult or expensive to implement. This paper describes the proposal for a model that would simulate the sound localization performance of profoundly hearing-impaired persons using bilateral cochlear implants (CIs). The expectation is that this model could ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016